CHARACTERISATION OF FOUR LACTOSE MONOPHOSPHATES BY APPLICATION OF ³¹P-, ¹³C-, AND ¹H-N.M.R. SPECTROSCOPY*

Jan Breg, Dick Romlin, Herman van Halbeek[†], Johannes F. G. Vliegenthart, Department of Bio-Organic Chemistry, University of Utrecht, P.O. Box 80.075, NL-3508 TB Utrecht (The Netherlands)

RINK A. VISSER,

CC Friesland Cooperative Company, Leeuwarden (The Netherlands)

AND CORNELIS A. G. HAASNOOT\$

Department of Biophysical Chemistry, Nijmegen University (The Netherlands)

(Received July 28th, 1987; accepted for publication, September 2nd, 1987)

ABSTRACT

By a combination of ion-exchange chromatography and h.p.l.c., two fractions (A and B) have been obtained from pharmaceutical-grade lactose, each containing a mixture of lactose monophosphates. ³¹P-N.m.r. and ¹³C-n.m.r. spectroscopic analysis indicated A to contain the 6- and 6'-phosphates and B to contain the 3'-and 4'-phosphates. Application of 2D-¹³C-¹H COSY and 2D-¹H-¹H COSY afforded ¹H-n.m.r. assignments for all protons in all four compounds. The observed ³¹P-¹H and ³¹C-¹H couplings are interpreted in terms of preferred orientations of the phosphate group in each compound.

INTRODUCTION

Upon crystallisation of pharmaceutical-grade lactose, an unknown acidic substance, which has a retarding effect on the growth rate of the crystal, is incorporated into the growing α -lactose hydrate crystal¹. The acidic material has been separated from lactose by using ion-exchange chromatography, and tentatively characterised by g.l.c. and n.m.r. spectroscopy as a mixture of isomeric lactose monophosphates² with the phosphate group linked to the galactose moiety of the molecule. By h.p.l.c., the mixture of lactose monophosphates could be further separated into two fractions, each being a mixture of at least two compounds. However, these mixtures could not be characterised by conventional ¹H-n.m.r. spectroscopy².

We now report the identification of the various components based on the

^{*}Dedicated to Professor Hans Paulsen.

[†]Present address: Complex Carbohydrate Research Center, Richard B. Russell Agricultural Center, P.O. Box 5677, Athens, Georgia 30613, U.S.A.

[‡]Present address: Unilever Research Lab., Vlaardingen, The Netherlands.

24 J. BREG et al.

application of ¹³C- and ³¹P-n.m.r. spectroscopy. Application of 2D-¹H-¹³C and ⁻¹H¹H shift-correlation spectroscopy allowed complete assignment of the ¹H-n.m.r. spectra of each component.

EXPERIMENTAL

The inhibitor of crystal-growth of lactose was concentrated into the crystal by repeated crystallisation¹, followed by separation of the ionic compounds from lactose by ion-exchange chromatography to yield a mixture (T) of disaccharide phosphates. Application of h.p.l.c. afforded² two sub-fractions (A and B).

Prior to ³¹P- and ¹³C-n.m.r. spectroscopy, the material was dissolved in D₂O (99.75% atom D), and the pD was adjusted to ~3.6 using NaOD or DCl (see Discussion). The pD values are non-corrected readings from a standard pH meter. 81-MHz ³¹P-n.m.r. spectra were obtained at 27°, using a Bruker WP-200 spectrometer operating in the pulsed F.t. mode and controlled by an Aspect 2000 computer; ${}^{31}P$ chemical shifts (δ) are expressed in p.p.m. relative to that of external orthophosphoric acid³. 50-MHz ¹³C-n.m.r. spectra were obtained at 27°, using a Bruker WM-200 spectrometer equipped with a 5-mm broad-band probe-head, operating in the pulsed F.t. mode and controlled by an Aspect 2000 computer (SON hf-NMR-facility, Department of Biophysical Chemistry, Nijmegen University). ¹³C Chemical shifts (δ) are expressed in p.p.m. relative to that of internal acetone at 31.55 p.p.m., with an accuracy of 0.02 p.p.m. 500-MHz ¹H-n.m.r. spectra were recorded at 27° with a Bruker AM-500 spectrometer operating in the pulsed F.t. mode and controlled by an Aspect 3000 computer (SON hf-NMR-facility). Prior to ¹H-n.m.r. spectroscopy, the pD-adjusted samples were repeatedly exchanged in D_2O after which the pD was readjusted to 3.6. Chemical shifts (δ) are expressed in p.p.m. downfield from that for sodium 4,4-dimethyl-4-silapentane-1-sulphonate (DSS), but were actually measured by reference to internal acetone (δ 2.225 p.p.m. in D₂O at 27°) with an accuracy of 0.002 p.p.m. ³¹P-Decoupling for ¹H- as well as for ¹³C-n.m.r. spectra was effected using an external source with in-built phasecycling necessary for Waltz-decoupling⁴. The ³¹P-decoupled ¹H-n.m.r. spectrum was obtained by using a broad-band probe tuned for both ¹H and ³¹P; the ³¹P-decoupled ¹³C-n.m.r. spectrum was obtained with a dual-probe, tuned for ¹³C, ³¹P, and ¹H, simultaneously.

The 2D- 13 C- 1 H shift-correlation experiments were performed with simultaneous suppression of 1 H homonuclear couplings 5,6 , using the standard Bruker pulse program XHCORRD. In this experiment, the phase cycling of the refocusing pulse, as described by Wilde 7 , was used in addition. Refocusing delays as required in the experiment were adjusted to an average $^{1}J_{C,H}$ coupling constant of 150 Hz 8 . In order to determine the 90° and 180° 1 H pulse-width, the spectrometer configuration was set for the 2D-experiment and the pulse-sequence 90°(13 C) - 1/(2J) - ϕ (1 H) - acq(13 C) was employed using a D-glucose sample in which C-1 was enriched 90% with 13 C. In this pulse-sequence, J is the one-bond C-H coupling for

glucose C-1 α and the ¹H pulse-widths are determined by a zero C-1 α signal for ϕ = 90° and a maximum reversed signal, with respect to the signal at ϕ = 0, for ϕ = 180°. The ¹³C and ¹H 90° pulse-widths were 8 and 12 μ s, respectively. A 128 × 4K data matrix was acquired which was zero-filled prior to Fourier-transformation to obtain a 2K × 8K spectral data matrix. A 1/6 π shifted sine-squared function for ¹³C-sub-spectra and a non-shifted sine-bell function for ¹H-sub-spectra were applied to enhance resolution.

 $2D^{-1}H^{-1}H$ correlation spectra were obtained by a three-pulse sequence, 90° $-t_1 - 90^{\circ} - 90^{\circ}$ — acq, which, in the proper phase-cycling, allowed for coherence transfer through a double quantum filter. Phase-sensitive handling of the data in ω_1 dimension became possible by TPPI¹⁰. A $480 \times 4K$ (fraction A) or $800 \times 4K$ (fraction B) data matrix was obtained, which was zero-filled to $2K \times 4K$ prior to Fourier-transformation. Resolution enhancement in ω_2 and suppression of truncation effects in ω_1 were obtained by a Gaussian window function in t_2 and a cosine-squared-bell function in t_1 .

RESULTS AND DISCUSSION

All n.m.r. spectroscopic studies were performed at a pD of \sim 3.6, which is in between the p K_{a1} and p K_{a2} values of the phosphate group, at \sim 1 and \sim 6, respectively. At this pD value, 13 C-n.m.r. chemical shifts of sugar phosphate resonances are not influenced 11 by slight variations in the actual pD. The same pD-dependence will probably also hold for 1 H- and 31 P-n.m.r. chemical shifts of sugar phosphates.

For the mixture T of lactose monophosphates, the 81-MHz 31 P-n.m.r. spectra without and with 1 H-decoupling are shown in Fig. 1. The 1 H-coupled 31 P-n.m.r. spectrum (Fig. 1a) exhibits two doublets at δ 0.53 and 1.45 with 3 J_{POCH} of 8.2 and 9.5 Hz, respectively, and occurring in an intensity ratio of 9:11. Furthermore, two triplets are present at δ 0.92 and 1.11, with 3 J_{POCH} of 4.5 and 6.9 Hz, respectively, in an intensity ratio of 2:3. The total intensities of the doublets amount to three times that of the triplets.

For fraction B, obtained after h.p.l.c. of T, the ^{31}P -n.m.r. spectrum only shows the presence of two doublets at δ 0.53 and 1.45. This feature points to the presence of at least two secondary monophosphates 12 . Consequently, the two triplets in the ^{31}P -n.m.r. spectrum of the mixture T, which correspond to two or more primary monophosphates, belong to the compounds in fraction A. However, the amount of material in fraction A was too low for experimental verification by ^{31}P -n.m.r. spectroscopy.

The 50-MHz 13 C-n.m.r. spectra of fractions B and A are shown in Figs. 2 and 3, respectively. Phosphorylation of a sugar unit will result in a down-field shift of 1.7–4.8 p.p.m. of the resonance of the carbon atom to which the phosphate group is attached, whereas those of the neighbouring carbons are shifted up-field, but usually to a lesser extent $^{13-16}$. Furthermore, this spectrum will show $^2J_{POC}$ and, for the neighbouring atoms, $^3J_{POCC}$ couplings.

26 J. BREG et al.

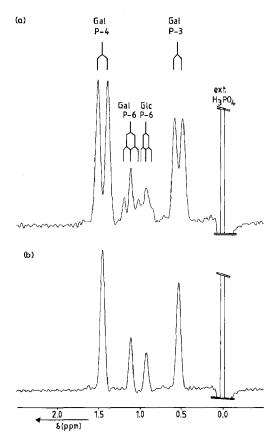


Fig. 1. 81-MHz 31 P-n.m.r. spectrum of fraction T, (a) without and (b) with 1 H-decoupling. The assignments are based upon further 13 C- and 1 H-n.m.r. spectroscopic analysis.

The 13 C-n.m.r. spectrum of fraction B (Fig. 2) contains C-1 α and C-1 β signals for the glucose moiety at δ 93.1 and 97.1, respectively. The positions and intensity ratio (3:5 for α : β) are equal to those of unsubstituted lactose (see Table I). This holds also for the other Glc signals, except those of C-4 α and C-4 β , which have slightly altered positions and are each present with two signals of differing intensities, *i.e.*, 3:4. These findings indicate the presence of at least two types of lactose, in which Glc is not phosphorylated. For the galactose moiety, three signals occur for C-1 at $\delta \sim 104$. Those at δ 104.28 and 104.32 are present in an intensity ratio equal to the $\alpha\beta$ -ratio. Two signals are present for Gal C-6 at δ 62.31 and 62.04 in an intensity ratio of 3:4. The positions of these signals are analogous to those for unsubstituted lactose (see Table I). Therefore, Gal C-2,3,4 have to be considered as possible sites of phosphorylation. When 1 H- and 31 P-decoupling are applied simultaneously, 6 signals are recognised in the 13 C-n.m.r. spectrum of fraction B containing a 13 C- 31 P coupling. In Fig. 2, these signals are indicated with splitting

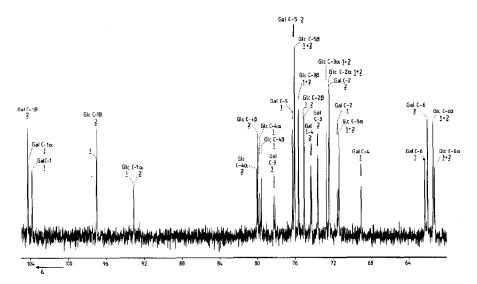


Fig. 2. 50-MHz ¹³C-n.m.r. ¹H-decoupled spectrum of fraction *B*, containing lactose 3'- (1) and 4'-phosphate (2). ¹³C-³¹P couplings are indicated with splitting patterns in the spectrum.

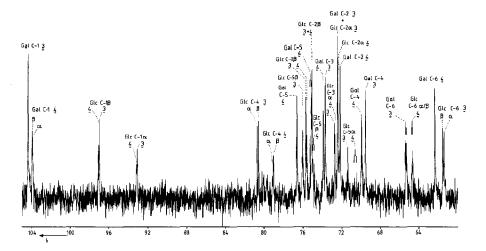


Fig. 3. 50-MHz ¹³C-n.m.r. ¹H-decoupled spectrum of fraction A, containing lactose 6'- (3) and 6-phosphate (4). ¹³C-³¹P couplings are indicated by splitting patterns in the spectrum.

patterns. Taking into account the above-mentioned effects of phosphate substitution, the $^{13}\text{C-n.m.r.}$ spectrum is now interpreted in terms of a 3:4 mixture of lactose 3'- (1) and 4'-phosphate (2). The $^{13}\text{C-n.m.r.}$ assignments for these compounds together with the chemical shift differences relative to lactose are listed in Table I. The identification of the compounds accords with the conclusions reached from the $^{31}\text{P-n.m.r.}$ spectra of fraction B.

TABLE I $^{13}\text{C-n.m.r.}$ chemical shifts^a (δ) of Lactose and its 3'-, 4'-, 6'-, and 6-phosphates

Atom	Compound					
	Lactose	3'-Phosphate	4'-Phosphate	6'-Phosphate	6-Phosphate	
Glc 1α	93.12	93.12 (0)b	93.09 (-3)	93.09 (-3)	93.17(+5)	
2α	72.47	72.46(-1)	72.43(-4)	72.41 (-6)	72.28 (-19)	
3α	72.72	72.71(-1)	72.71(-1)	72.75(+3)	72.69 (-3)	
4α	79.78	79.75 (-3)	80.05 (+27)	80.73 (+95)	79.10 (-68)	
5α	71.39	71.39 (0)	71.39 (0)	71.33 (-36)	70.51 (-88)	
6α	61.27	61.25(-2)	61.25(-2)	61.42(+15)	64.66 (+339)	
Glc 1β	97.07	97.07 (0)	97.03 (-4)	97.00(-7)	97.13 (+6)	
2β	75.12	75.12 (0)	75.08 (-4)	75.05(-7)	75.05 (-7)	
3β	75.68	75.67 (-1)	75.67 (-1)	75.70(+2)	75.61 (-7)	
4β	79.65	79.60(-5)	79.95 (+30)	80.57 (+92)	79.10 (-55)	
5β	76.09	76.08(-1)	76.08 (-1)	76.02 (-7)	74.87 (~122)	
6 β	61.39	61.39 (0)	61.39 (0)	61.56 (+17)	64.70 (+331)	
Gal 1α	104.23	103.87 (-36)	104.28(+5)	104.40 (+17)	103.91(-32)	
1β		, ,	104.32 (+9)	, ,	103.96 (-27)	
2	72.26	71.51 (-75)	72.39 (+13)	72.41 (+15)	72.17 (-9)	
3	73.84	78.24 (+440)	73.63 (-21)	73.69 (-15)	73.90 (+6)	
4	69.86	69.05 (-81)	74.32 (+446)	69.50 (+36)	69.94 (+8)	
5	76.65	76.30 (-35)	76.11 (-54)	75.20 (-145)	76.60 (-5)	
6	62.33	62.31 (-2)	62.04 (-29)	65.34 (+301)	62.33 (0)	

Expressed relative to the signal for acetone at 31.55 p.p.m. b In brackets are the chemical shift differences relative to lactose (× 100).

The 50-MHz ¹H-decoupled ¹³C-n.m.r. spectrum of fraction A is shown in Fig. 3. The spectrum contains signals for Glc C-1 α and C-1 β and for Gal C-1 at positions that are shifted only slightly with respect to those for unsubstituted lactose. As in fraction B, the anomeric signals are split into two signals, the intensity ratio being 3:2. The Gal C-1 signal at δ 103.9 shows a doubling due to anomerisation of the Glc residue. These findings point to the presence of two or more lactose monophosphates, in which the phosphate is not attached to Glc C-1. From a simultaneously ³¹P- and ¹H-decoupled ¹³C-n.m.r. spectrum of fraction A, a number of doublets due to ¹³C-³¹P coupling are recognised, as indicated in Fig. 3 together with the splitting patterns. Two of these signals, at δ 64.7 and 65.3 (the former being resolved into an α and a β signal), are \sim 3 p.p.m. down-field from those of Glc and Gal C-6, respectively, in free lactose. These signals are ascribed to C-6 of a Glc and a Gal residue with a phosphate at C-6. The bulk-region of the spectrum shows 3 additional signals with a ¹³C-³¹P coupling. These are at positions expected for C-5 of Gal and Glc residues of lactose with phosphate at C-6 or C-6'. The total spectrum is then interpreted to be derived from a 3:2 mixture of lactose 6'- (3) and 6-phosphate (4). The ¹³C-n.m.r. assignments together with the chemical shift differences relative to lactose are listed in Table I.

For all four lactose phosphates, the ¹³C-n.m.r. shift-effects induced by phos-

phate substitution are restricted to the α , β , and γ carbons, *i.e.*, the α -carbon resonance is shifted down-field 4.5 p.p.m. (Gal C-3 and C-4 in 1 and 2, respectively) and 3.0 p.p.m. (Gal C-6 and Glc C-6 in 3 and 4, respectively). The β - and γ -carbon resonances are shifted up-field <1 p.p.m., the effect on the β -carbon resonance being the largest. For lactose 4'- and 6'-phosphate, an additional down-field shift is observed for the resonances of Glc C-4 α and C-4 β . Furthermore, for lactose 6-phosphate, there is an up-field shift for the resonance of Gal C-6. Since these extra shift effects are restricted to atoms involved in the glycosidic linkage, they probably originate from small alterations of the conformation about this linkage.

The 500-MHz ¹H-n.m.r. spectra of fractions A and B are presented in Fig. 4, which includes the difference spectra obtained after subtracting the corresponding ³¹P-decoupled 500-MHz spectra. As expected from the ³¹P-n.m.r. spectrum (see Fig. 1), several ³¹P-¹H couplings are present. The ¹H-n.m.r. spectra were unravelled by application of heteronuclear ¹³C-¹H spectroscopy. The 2D-¹³C-¹H COSY spectrum of fraction T at a ¹H-n.m.r. frequency of 200 MHz is depicted in Fig. 5. In this experiment, ¹H-¹H couplings were eliminated in order to obtain maximum resolution and sensitivity. The resolution in the ¹H domain is sufficient to resolve the ³¹P-¹H couplings, when present. This is so for Gal C-3,4,6 in 1-3, respectively (see the enlarged cross-peaks in Fig. 5). The cross-peak for Glc C- $6\alpha/\beta$ is below the lowest level of the contour plot. The 2D-13C-1H COSY spectrum affords ¹H-n.m.r. chemical shifts for all atoms in all four lactose monophosphates and allows proper assignment of all structural reporter-groups in the 500-MHz ¹Hn.m.r. spectrum of fractions A and B. Refinement of these assignments is obtained by 2D-1H-1H correlation spectroscopy at 500 MHz (see Fig. 6, 1H-1H COSY spectrum of fraction B). For several atoms, only approximate ¹H-n.m.r. chemical shifts are obtained due to interference of cross-peaks with diagonal-peaks (see Table II). The precise values of the Glc H-6 resonances in lactose 6-phosphate are difficult to establish since the H-6a and H-6b signals are nearly isochronous and, furthermore, the resonances of their respective α and β protons have slightly different chemical shifts, giving rise to a complex multiplet for these signals. The signals for H-6a and H-6b of Gal in lactose 6'-phosphate are superimposed at δ 4.024. For all compounds, phosphate attachment induces a down-field shift for nearly all the protons of the monosaccharide unit to which phosphate is attached. The effect on the α -proton is the largest, i.e., 0.45 and 0.55 p.p.m. for the 3- and 4-phosphate, respectively, and 0.25-0.30 p.p.m. for the 6-phosphate. The effect on the resonance of the β -proton can also be substantial, e.g., up to 0.22 p.p.m. for H-4 of lactose 3'-phosphate.

The various ${}^{31}P^{-1}H$ and ${}^{31}P^{-13}C$ coupling constants determined from the ${}^{13}C$ -, ${}^{31}P$ -, and ${}^{1}H$ -n.m.r. spectra (see Table III) are interpreted in terms of a distribution among a number of preferred orientations of the phosphate group relative to the sugar residue to which it is attached. For lactose 3'-phosphate, 3 possible rotamers are assumed. When the HCOP torsion-angle (θ) is taken as reference, these orientations are trans (t), gauche+ (g+), and gauche- (g-), with the fractional

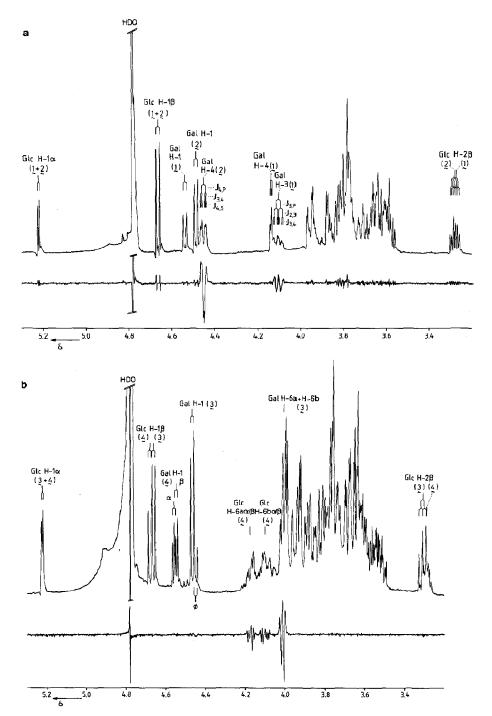


Fig. 4. 500-MHz 1 H-n.m.r. spectra of (a) fraction A, containing lactose 3'- (1) and 4'-phosphate (2), and (b) fraction B, containing lactose 6'- (3) and 6-phosphate (4). Included are the difference spectra with their corresponding 31 P-decoupled 1 H-n.m.r. spectra.

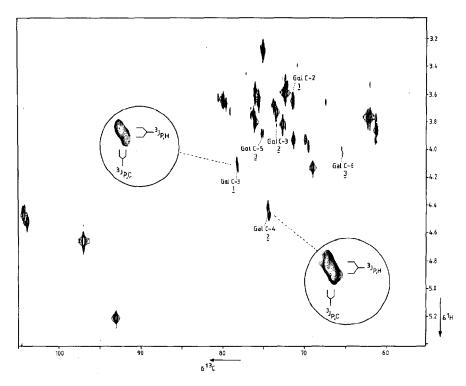


Fig. 5. $2D^{-13}C^{-1}H$ heteronuclear shift-correlation spectrum of fraction T, containing all four lactose phosphates, at a ^{1}H -frequency of 200 MHz. Indicated in the Figure are only those signals that exhibit a $^{31}P^{-13}C$ coupling. In the two insets, the cross-peaks of Gal C-3 and Gal C-4 of 1 and 2, respectively, have been enlarged, *i.e.*, with different enlargement factors in the ^{1}H - and ^{13}C -dimensions.

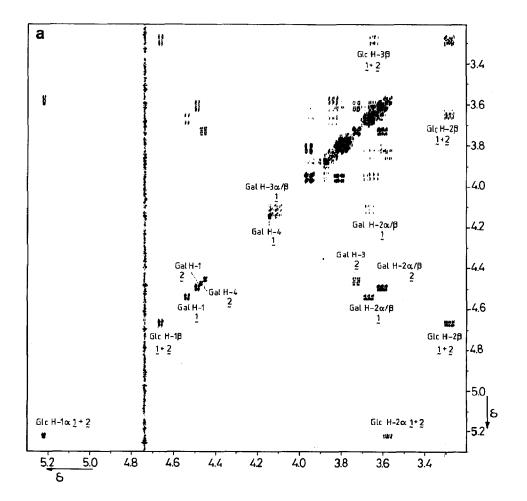
populations of these orientations being P_t , P_{g^+} , and P_{g^-} . The observed (time-averaged) coupling constants are then determined by the following equations.

$${}^{3}J_{\text{POCH}} = P_{g}J(g^{-}) + P_{g}J(g^{+}) + P_{r}J(t)$$
 (1)

$${}^{3}J_{POCC-2'} = P_{g}J'(g^{-}) + P_{g}J'(g^{+}) + P_{g}J'(t)$$
 (2)

$${}^{3}J_{POCC-4'} = P_{g}J''(g) + P_{g}J''(g') + P_{g}J''(t)$$
(3)

$$P_{g^{-}} + P_{g^{+}} + P_{t} = 1 (4)$$


Since no information is available about the exact value of θ for the different orientations, the classical values -60, +60, and +180 degrees are used for g^- , g^+ , and t, respectively. For the calculation of the coupling constants for the three orientations, a set of Karplus equations (5 and 6) is used for vicinal coupling-constants in CCOP and HCOP fragments¹⁷⁻¹⁹.

$${}^{3}J_{\text{POCH}} = 15.3\cos^{2}\theta - 6.1\cos\theta + 1.6 \tag{5}$$

$${}^{3}J_{\text{POCC}} = 6.9 \cos^{2}\theta - 3.4 \cos\theta + 0.7 \tag{6}$$

The parameters in equations 5 and 6 were derived simultaneously, using a large data set of vicinal $^{31}P^{-1}H$ and $^{31}P^{-1}H$ coupling-constants 17 . These equations indicate, for the two gauche orientations, $^{3}J_{POCH}$ and $^{3}J_{POCC}$ to be \sim 2 and \sim 0.5 Hz, respectively, while, for the trans orientation, $^{3}J_{POCH}$ and $^{3}J_{POCC}$ are \sim 23 and \sim 11 Hz, respectively. On the basis of equations 1-4, the populations are found for the HCOP fragment in lactose 3'-phosphate, i.e., $P_{g^{-1}}P_{g^{+1}}P_{t}\approx 0.6:0.1:0.3$. These findings indicate the g^{+} orientation to be unfavourable, probably due to steric interactions with O-2.

For lactose 4'-phosphate, a completely analogous handling of the vicinal coupling constants involving the phosphate group indicates the three orientations

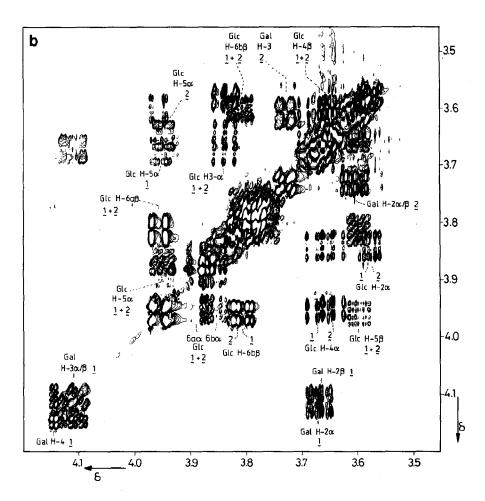


Fig. 6. 500-MHz 2D-1H-1H double-quantum-filtered shift-correlation spectrum of fraction B, containing lactose 3'- (1) and 4'-phosphate (2). Shown are (a) the total spectrum and (b) the region of skeleton protons.

for the HCOP fragment to be populated as $P_g:P_g:P_t\approx 0.2:0.4:0.4$. This indicates a slightly decreased tendency for the phosphate group to adopt the g^- orientation, which is probably due to steric interaction with the Gal hydroxymethyl group.

For lactose 6'-phosphate and lactose 6-phosphate, no separate vicinal coupling constants are observed with the two H-6 in each phosphorylated hydroxymethyl group. In that case, only the population can be determined of the orientation for which the phosphate group is *trans* with respect to C-5, using the equation¹⁷:

$$P_{t} = (25.5 - \Sigma')/20.5, \tag{7}$$

where $\Sigma' = {}^3J_{\text{POCH-6a}} + {}^3J_{\text{POCH-6b}}$.

J. BREG et al.

TABLE II 1 H-n.m.r. Chemical Shifts^a (δ) for lactose and its 3'-, 4'-, 6'-, and 6-phosphates

Proton	Compound					
	Lactoseb	3'-Phosphate	4'-Phosphate	6'-Phosphate	6-Phosphate	
Glc 1a	5.221	5.222 (+1)c	5.222 (+1)	5.221 (0)	5.224 (+3)	
2α	3.577	3.575(-2)	3.571 (-6)	3.586 (+9)	3.607 (+30)	
3α	3.832	3.844 (+12)	3.840 (+8)	3.830(-2)	3.830(-2)	
4α	3.646	3.674 (+28)	3.647 (+1)	3.624 (-2)	3.734 (+88)	
5α	4.95	3.95 (0)	3.95 (0)	3.947 (0)	4.062 (+110	
$6a\alpha$	3.878	3.88 (0)	3.88 (0)	3.88 (0)	4.18 (+300	
$6b\alpha$	3.852	3.85 (0)	3.85 (0)	3.85 (0)	4.11 (+260	
Glc 1 β	4.660	4.665 (+5)	4.665 (+5)	4.662 (+2)	4.682 (+22)	
2β	3.285	3.280(-5)	3.289(+4)	3.314(+29)	3.295 (+10)	
3 <i>β</i>	3.630	3.643 (+13)	3.646 (+16)	3.639 (+9)	3.639 (+9)	
4β	3.65	3.67 (+2)	$3.66 (+1)^{'}$	3.65 (0)	3.65 (0)	
5 β	3.595	3.594(-1)	3.594(-1)	3.60 (0)	3.75 (+15)	
6aβ	3.950	3.960(+10)	3.960(+10)	3.947(-3)	4.18 (+23)	
6b β	3.797	3.817(+20)	3.809(+12)	3.787(-10)	4.11 (+31)	
Gal 1α	4.448	4.542 (+94)	4.493 (+45)	4.469(+21)	4.556 (+108	
2α	3.549	3.676 (+127)	3.612(+63)	3.554 (+5)	3.521 (-28)	
3α	3.663	4.114 (+451)	3.733 (+70)	3.686(+23)	3.678 (15)	
4α	3.926	4.147 (+221)	4.463 (+537)	3.985(+59)	3.922(-4)	
5α	3.72	3.76 (+40)	3.81 (+90)	3.885(+170)	3.72 (0)	
6aα	3.76	3.76 (0)	3.76 (0)	4.024(+260)	3.76 (0)	
$6b\alpha$	3.79	3.79 (O)	3.79 (O)	4.024 (+230)	3.79 (0)	
Gal 1B	4.448	4.540 (+92)	4.492 (+44)	4.469(+12)	4.546 (+89)	
2β	3.540	3.668 (+128)	3.604 (+64)	3.554 (+14)	3.518(-22)	
3β	3.660	4.111 (+451)	3.733 (+73)	3.686 (+26)	3.678 (+18)	
4 β	3.926	4.147 (+221)	4.463 (+537)	3.985 (+59)	3.922 (-4)	
5β	3.72	3.76 (+40)	3.81 (+90)	3.885 (+170)	3.72 (0)	
6aβ	3.76	3.76 (0)	3.76 (0)	4.015(+260)	3.76 (0)	
6b β	3.79	3.79 (0)	3.79 (0)	4.015(+230)	3.79 (0)	

^aChemical shifts are relative to the signal of DSS (using internal acetone at δ 2.225 p.p.m.) in D₂O. ^bChemical shifts for lactose have been obtained by ¹³C⁻¹H and ¹H⁻¹H 2D spectroscopy. ^cIn brackets are the chemical shift differences relative to lactose (× 1000).

From the experimental values in Table III, it then follows that, for lactose 6'-phosphate, the torientation is adopted for $\sim 60\%$ of the time; for lactose 6-phosphate, this is $\sim 80\%$. The predominance of the torientation for both lactose 6'-phosphate and lactose 6-phosphate is in agreement with the large $^3J_{\rm POCC.5}$ for both disaccharides, *i.e.*, application of equation 2 for this linkage yields 7 and 9 Hz, respectively. The orientation around the C-5-C-6 bond cannot be determined solely from the observed ^{31}P coupling-constants, but the estimated coupling-constants of H-5 with H-6a and H-6b for the phosphorylated hydroxymethyl groups do not suggest a dramatic deviation from the situation for free lactose.

The results presented indicate that the combined use of different n.m.r. spectroscopic techniques is needed when identifying a carbohydrate compound for which not enough reference data are available. The complexity of the ¹H-n.m.r.

TABLE III

31P-1H AND 31P-13C COUPLING CONSTANTS (Hz) FOR LACTOSE PHOSPHATES AS DETERMINED FROM 13C-,
31P-, AND 1H-N.M.R. SPECTRA

Linkage	Compound						
	3'-Phosphate	4'-Phosphate	6'-Phosphate	6-Phosphate			
POCC-2'	6.1ª						
POC-3'	5.2ª						
POCC-3'		1.9^{a}					
POC-4'		5.5°					
POCC-4'	1.5^{a}						
POCC-5'		4 ^a	8^a				
POC-6'			5ª ·				
POCC-5				8.9^{a}			
POC-6				6a			
POCH-3'	8.2						
POCH-4'		9.5^{b}					
POCH-6'			6.9^{c}				
POCH-6				4.5°			

^aDetermined from ¹H-decoupled ¹³C-n.m.r. spectra. ^bDetermined from ¹H-n.m.r. and ³¹P-n.m.r. spectra. ^cDetermined from ³¹P-n.m.r. spectra.

spectra of the fractions A and B precluded application of an approach using structural reporters only^{20,21}. However, the combined use of ³¹P- and ¹³C-n.m.r. spectroscopy afforded enough data to identify the constituents of the two mixtures. Application of shift effects in ¹³C-n.m.r. spectroscopy may prove more fruitful than in ¹H-n.m.r. spectroscopy when completely new compounds are concerned. The pH was of major importance when comparing the n.m.r. spectra of the different lactose phosphate-containing fractions.

Phosphate-containing oligosaccharides from biological sources are usually obtained only in low amounts, which might preclude application of ¹³C- and ³¹P-n.m.r. spectroscopy, and the identification of the primary structures of these oligosaccharides might still rely on analysis of structural reporter-groups, combined with analysis of sub-spectra using spinlock techniques²². A proper understanding of ³¹P-induced shift effects in the ¹H-n.m.r. spectra is therefore of value when identifying primary structures of oligosaccharides containing phosphate groups. Also, the use of 2D-¹³C-¹H-n.m.r. spectroscopy may be suitable for the study of sulphated oligosaccharides for which larger quantities are available and might provide data for structural analysis using only the structural reporter-groups in a high-resolution ¹H-n.m.r. spectrum.

ACKNOWLEDGMENTS

This research was supported by the Netherlands Foundation for Chemical

Research (SON/ZWO), and grant UUKC 83-13 from the Netherlands Foundation for Cancer Research. Thanks are due to Ing. P. A. W. van Dael for technical assistance.

REFERENCES

- 1 R. A. VISSER, Neth. Milk Dairy J., 34 (1980) 255-275.
- 2 R. A. VISSER, Neth. Milk Dairy J., 38 (1984) 107-133.
- 3 M. M. CRUTCHFIELD, C. H. DUNGAN, J. H. LETCHER, V. MARK, AND J. R. VAN WAZER, in M. GRAYSON AND E. J. GRIFFITH (Eds.), *Topics in Phosphorus Chemistry*, Vol. 5, Interscience, New York, 1967.
- 4 A. J. SHAKA, J. KEELER, AND R. FREEMAN, J. Magn. Reson., 53 (1983) 313-340.
- 5 A. BAX, J. Magn. Reson., 53 (1983) 517-520.
- 6 V. RUTAR, J. Magn. Reson., 58 (1984) 306-310.
- 7 J. A. WILDE AND P. H. BOLTON, J. Magn. Reson., 59 (1984) 343-346.
- 8 L. D. HALL AND G. A. MORRIS, Carbohydr. Res., 82 (1980) 175-184.
- 9 M. RANCE, O. W. SØRENSEN, G. BODENHAUSEN, G. WAGNER, R. R. ERNST, AND K. WÜTHRICH, Biochem. Biophys. Res. Commun., 117 (1983) 479-485.
- 10 D. MARION AND K. WÜTHRICH, Biochem. Biophys. Res. Commun., 117 (1983) 967-974.
- 11 J. V. O'CONNER, H. A. NUNEZ, AND R. BARKER, Biochemistry, 18 (1979) 500-507.
- 12 A. J. R. COSTELLO, T. GLONEK, M. E. SLODKI, AND F. R. SEYMOUR, Carbohydr. Res., 42 (1975) 23-37.
- 13 H. H. MANTSCH AND I. C. P. SMITH, Biochem. Biophys. Res. Commun., 46 (1972) 808-815.
- 14 P. A. J. GORIN, Can. J. Chem., 51 (1973) 2105-2109.
- 15 T. YADOMAE, N. OHNO, AND T. MIYAZAKI, Carbohydr. Res., 75 (1979) 191-198.
- 16 D. R. BUNDLE, I. C. P. SMITH, AND J. JENNINGS, J. Biol. Chem., 249 (1974) 2275-2281.
- 17 P. P. LANKHORST, C. A. G. HAASNOOT, C. ERKELENS, AND C. ALTONA, J. Biomol. Struct. Dyns., 1 (1984) 1387–1405.
- 18 P. P. LANKHORST, C. A. G. HAASNOOT, C. ERKELENS, AND C. ALTONA, Nucleic Acids Res., 12 (1984) 5419–5428.
- 19 P. P. LANKHORST, C. A. G. HAASNOOT, C. ERKELENS, H. P. WESTERINK, G. A. VAN DER MAREL, J. H. VAN BOOM, AND C. ALTONA, Nucleic Acids Res., 13 (1985) 927–942.
- 20 J. F. G. VLIEGENTHART, H. VAN HALBEEK, AND L. DORLAND, Pure Appl. Chem., 53 (1981) 45-77.
- 21 J. F. G. VLIEGENTHART, L. DORLAND, AND H. VAN HALBEEK, Adv. Carbohydr. Chem. Biochem., 41 (1983) 209-374.
- 22 D. G. DAVIS AND A. BAX, J. Am. Chem. Soc., 107 (1985) 7197-7198.